

HC-F600 裂缝综合测试仪

北京海创高科科技有限公司 BEIJING HICHANCE TECHNOLOGY CO.,LTD.

地 址: 北京市海淀区西三旗 801 号院军民融合 创新创业基地 108 室 电 话: 400-010-5818 传 真: 010-62323261 网 址: www.bjhcgk.com 邮 编: 100192

使用说明书

请在充分理解内容的基础上,正确使用。

1 仪器概述	
1.1 主要功能	2
1.2 功能特点	2
1.3 依据标准	2
1.4 应用领域	3
1.5 技术指标	3
1.6 仪器维护及保养	4
2 仪器组成	
2.1 主机	
2.2 平面换能器	
2.3 其他配件	
3 仪器操作说明	
3.1 公共模块说明	9
3.2 系统设置	9
3.2.1 设备信息	9
3.2.2 网络设置	
3.2.3 软件更新	
3.2.4 个性化设置	11
4 混凝土裂缝深度检测	
4.1 主测量界面	
4.2 参数设置	13
4.2.1 高级设置	
4.2.2 网络设置	
4.3 数据采集	
4.3.1 波形编辑	
4.3.2 数据列表区	
4.5 数据覆盖	
4.6 数据分析	
4.7 文件管理	
4.8 退出	20
5 混凝土裂缝宽度检测	
5.1 主测量界面	22
5.2 数据采集	22

5.3 数据处理	22
5.4 文件管理	23
5.5 仪器标定	25
5.6 退出	
6 分析软件概述	
6.1 简介	28
6.2 主要功能以及特点	28
6.3 文件类型	28
6.4 安装与卸载	
6.4.1 软件安装	
6.4.2 软件卸载	
7 超声测缝(平测)分析软件	
7.1 超声测缝(平测)分析软件简介	31
7.2 软件界面介绍	31
7.3 菜单命令	35
7.3.1 文件 菜单	35
7.3.2 编辑菜单	
7.3.3 查看菜单	38
7.3.4 处 理菜单	39
7.3.5 工具菜单	39
7.3.6 帮助菜单	4
8 裂缝宽度分析软件	
8 裂缝宽度分析软件 8.1 裂缝宽度分析软件简介	10
8.2 软件界面介绍	
8.3 菜单命令	
8.3.1 文件菜单	
8.3.2 查看菜单	
8.3.3 判读菜单	
8.3.4 关于菜单	
8.3.5 工具栏	45
9 常用快捷键说明	
9.1 文件菜单中的快捷键列表	47
9.2 编辑菜单中的快捷键列表	
	11

HC-F600 裂缝综合测试仪采用超声波原理及显微摄像技术,适用于混凝土、非金属表面等裂缝深度和宽度的检测。

1.1 主要功能

- 混凝土裂缝深度检测(简称"测缝")
- 混凝土裂缝宽度检测(简称"测宽")

1.2 功能特点

- 全触屏操作,简单方便,稳定可靠
- 大尺寸高亮液晶显示屏 (5 寸, 720x1280)
- 操作界面简单友好,易学易用
- 低功耗设计,连续工作时间大于8小时
- 混凝土裂缝测宽、裂缝测深,2大功能集于一体
- 自动判读首波声时、波幅,实时显示,测试结果一目了然
- 可手动调整声时线,避免误判,操作简单实用
- 测试过程中,可任意覆盖、删除已存测点波形
- U 盘转存数据,支持通过 U 盘进行软件升级
- PC 机专用分析软件功能强大,数据分析处理、打印报表轻松完成

1.3 依据标准

- GB 50292-2015 民用建筑可靠性鉴定标准
- GB 50204-2015 混凝土结构工程施工质量验收规范
- GB/T 50784-2013 混凝土结构现场检测技术标准
- JGJ 125-2016 危险房屋鉴定标准
- DB 11/T637-2015 房屋结构安全鉴定标准
- CECS 21:2000 超声法检测混凝土缺陷技术规程
- SL/T 352-2020 水工混凝土试验规程

仪器概述

1.4 应用领域

建筑行业、交通行业、公路、铁路、桥梁、码头等。

1.5 技术指标

- 通道数:双通道
- 显示方式: 5 寸彩色液晶屏(720x1280)
- 存储容量: 16G
- 采样间隔: 0.025 μs ~ 2000 μs 多档可选
- 采样长度: 512点~ 2048点多档可选
- 发射脉宽: 0.1 μs ~ 100 μs
- 发射电压: 125V、250V、500V、1000V 多档可选
- 触发电路: 内触发方式
- 转存方式: 专用 U 盘
- 充电电源: AC100~240 V, 50/60Hz, 输出 12.6V DC, 3.0A
- 主机体积: 200×144×65(mm)
- 主机重量: 1.35kg
- 工作温度: -20 ~ +60℃
- 深度测量范围: 5 ~ 500 mm
- 宽度测量范围: 0.01 ~ 10 mm

1.6 仪器维护及保养

为了保证 HC-F600 裂缝综合测试仪的一致性和稳定性,应定期对仪器的性能状况进行校验。请您在使用前认真阅读使用说明书。在使用中应注意以下事项:

- 1.防震: 仪器在使用及搬运过程中, 应防止剧烈震动和冲击。
- 2.防磁: 在使用本仪器时, 应尽量避开电焊机、变压器等强电磁干扰源。
- 3.防腐蚀:在潮湿、灰尘、腐蚀性气体环境中使用时,应采取必要的防护措施。
- 4.**防高低温**. 仪器的工作温度控制在 **-20**℃~ **+60**℃且不要把仪器直接放在太阳下暴晒,如超出此温度范围,则仪器可能工作不正常。
- 5.**储存**:不用时,请将仪器放在包装箱中。仪器应放在通风、阴凉、干燥室温环境下保存。如长期不使用,应定期通电开机检查。
- 6.**充电**: 仪器采用内置专用可充电锂电池供电,如完全充满,可连续工作大于 8 小时。使用时请注意电量指示并及时充电。禁止使用非指定电源为本仪器供电。
- 7.**换能器保护**:较强烈的冲击或震动可能会导致换能器的性能下降或损坏,应防止换能器从高处跌落或被压在重物之下。
- 8.清洁:请用干净柔软的干布擦拭主机和干净柔软的毛刷清理插座。

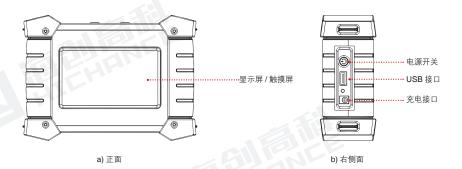
提示:本仪器为精密仪器,内有高压电路,请勿擅自将仪器拆开,否则可能危及人身安全和损坏仪器(后果自负)

2 仪器组成

整套测试仪器由以下几部分构成:

1.HC-F600 裂缝综合测试仪主机

4. 显微摄像探头


2. 平面换能器: 1对

5. 充电器

3. 平面换能器信号线及其他配件

6. 仪器主机及配件箱

2.1 主机

接收 发射 接收 发射

c) 前侧面

图 2.1 HC-F600 裂缝综合测试仪主机外观示意图

提示:实际仪器可能与示意图有所差别,请以实物为准。

显示屏: 5 寸高亮彩色液晶屏。

发射/接收通道:连接发射和接收换能器的通道。

电源开关:按此电源按钮可以开机,同时听到"嘀"的蜂鸣声。开机后再次长按此键,会听到"嘀嘀"两声,系统关机。

提示: 系统在测量过程中, 禁止直接关机, 否则会有数据丢失可能。建议将软件退回到"功能选项界面"再进行关机。

USB 接口: 此接口用于连接专用 U 盘,将测量的数据文件转存到 U 盘,然后在计算机上进行分析计算、打印报表等。

充电接口: 用于给仪器的大容量锂电池充电。

提示: 充电器必须是本公司专用充电器, 否则可能会损坏仪器。

2.2 平面换能器

复合结构纵向振动换能器(又称夹心式或喇叭型换能器,俗称"平面换能器",如图 2.2 所示)是一种简单辐射器,它是利用压电陶瓷的厚度振动。平面换能器既可以发射,也可以接收,可以完全互换,主要用于检测混凝土的强度、内部缺陷等。

图 2.2 平面换能器

2.3 其他配件

详见仪器装箱单。

3.1 公共模块说明

按下仪器电源开关,仪器发出"嘀"的响声,系统进入启动状态,系统启动完成后,屏幕显示功能选项界面,如图 3.1 所示。通过点击功能选项界面的图 片选择不同的功能选项。

🔛 : 检测裂缝深度(平测法)

: 检测裂缝宽度

: 设置设备信息、网络参数及其他参数

◎ : 执行关机操作

图 3.1 检测仪主测量界面

3.2 系统设置

在功能选项界面点击【✿】,打开系统设置界面,如图 3.2 所示。系统设置包括设备信息、网络设置、软件更新、个性化设置和关于我们五个功能。

图 3.2 系统设置界面

3.2.1 设备信息

点击【设备信息】标签,切换到该属性页,如图 3.2 所示。设备信息主要包括仪器、 检定等信息。

检定日期:指仪器最近一次的检定日期。

检定周期: 指每次检定的时间间隔, 以实际情况进行设置即可。

检定提醒:检定提示设置开启时,在检定周期到期前的一个月,每次开机均提示用户送检。

点击各内容输入框,可以修改检测单位、测试人员、上岗证号、检定日期、检 定周期、检定证号等信息。

在设置完所有参数后,点击【确定】,则所有设置有效,并返回功能选项界面; 点击【返回】,则设置无效,并返回功能选项界面。

3.2.2 网络设置

点击【网络设置】标签,切换到该属性 页,如图 3.3 所示。

1. 服务器选择

显示仪器数据上传所选的云端管理服务器。通常选用默认服务器,如需定制请联系本公司。如果服务器地址变更,可点击编辑对IP地址及端口号进行调整。

2.WiFi 名称

显示仪器所连接 WiFi 的名称。点击 【搜索】,设置仪器所连接的 WiFi, 用于将数据上传至服务器和更新软件。

图 3.3 网络设置界面

3.2.3 软件更新

点击【软件更新】标签,切换到该属性页,如图 3.4 所示。点击【WIFI 更新】,可通过网络对仪器内部的所有软件进行自动更新和安装。

点击【U **盘更新**】,可通过 U 盘对仪 器内部的所有软件进行更新和安装。

图 3.4 软件更新界面

3.2.4 个性化设置

点击【**个性化设置**】,切换到该界面, 如图 3.5 所示。

1. 声音提示

当按钮选择为 ON, 软件会有声音提示。

2. 休眠时间

可调整仪器在未使用状态下的休眠时间。

图 3.5 个性化设置界面

3. 系统时间

可对仪器系统时间进行调整设置。

4. 亮度调整

可对仪器背光亮度设置,弹出亮度调整栏,左右滑动来调节背光亮度。

5. 语言

可将仪器语言切换为英文显示。

4.1 主测量界面

在功能选项界面,点击【₩】后,进入 裂缝测深主测量界面,如图 4.1 所示。

主测量界面包括六部分:

- 1.**标题栏**:显示工程名称、构件名称、 系统时间、电池电量等信息。
- 2.**波形区**:显示当前测点的波形及声参量等参数。

图 4.1 测缝主测量界面

- 3.**缝数据列表区**:显示当前构件的所有 裂缝的信息(包括检测方式、测点数、状态/推定缝深)。
- 4.**数据列表区**:用于显示每个测点超声数据(声时、波速等),在数据列表区可以设置反相点、剔除数据等。
- 5.**回归曲线示意图区**: 以蓝色粗实线代表跨缝的各测点的声时-测距曲线,红色粗实线代表不跨缝的各测点的声时-测距曲线。在测试过程中动态实时刷新,可以随时观察到当前缝的测试结果,同时在曲线右上方显示计算斜率、截距和相关性系数的结果值。
- 6.功能按钮区:显示各个功能按钮。

4.2 参数设置

点击采集界面的【参数】按钮,进入检测参数设置界面,如图 4.2 所示。设置完所有参数后,按【确定】,则所有设置生效,并返回主测量界面;按【取消】,则设置无效,并返回主测量界面。

工程名称:

1. 新建工程

点击【新建】,可对工程名称进行修改。

图 4.2 检测参数设置界面

选择已测工程

点击工程名称输入框时,显示下拉框,列出当前最近时间已测的工程。输入工程名时,可显示接近的工程名列表。

2. 构件名称:

新建构件

点击构件名称输入框,可输入构件名称。

测点间距: 为第一个测点的发射与接收换能器内边缘距离,取值范围 50~200mm。

测距增量:第一个测点的间距为"测点间距",第二个测点的距离为第一个测点 + 测距增量,以此类推。当测点间距为零时,各个测点距离是一样的。当测点间距不为零时,测点的间距会逐点增加,这种测试情况用于平测法测强、测缺、测缝。默认测距增量为 0。

测试规程:系统计算时所使用的规范,可选择 BS 1881、CECS 21 等规范,系统默认测试规程为 CECS 21 规范。

提示: BS 1881 为英国混凝土试验标准中的缝深测试方法。

高级设置:点击【高级设置】,进入高级参数设置界面。

网络设置:点击【网络设置】,进入服务器和 WiFi 设置界面。

4.2.1 高级设置

在图 4.2 中点击【高级设置】,进入高级参数设置界面,如图 4.3 所示。

零声时修正: 裂缝综合测试仪与发射、接收换能器系统的声延时,实测的声时值必须消除零声时。第一次使用裂缝综合测试仪、更换换能器或信号线时,均应进行此操作。可手动输入,也可将换能器紧贴一起后,点击【获取】,弹出零声时设置对话框,如图 4.4 所示.自

图 4.3 高级参数设置界面

动开始采样,在波形区显示波形并自动 搜索首波,找到首波后,查看声参量信 息。点击对话框中【确定】,零声时会 自动完成设置。

发射电压: 裂缝综合测试仪激励发射换能器产生超声脉冲时的激励电压值,共有 125、250、500、1000V 四档可选。

波形点数: 采集单个波形的总点数,共有 512、1024、2048 三档可选。

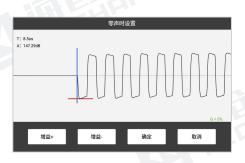


图 4.4 零声时设置对话框

采样间隔:可有 $0.025~2000~\mu~s$ 多档可选,系统默认采样间隔为 $0.50~\mu~s$ 。

发射通道:连接发射换能器的通道。

接收通道:连接接收换能器的通道。

默认值:点击【默认值】,系统会将每个参数恢复到默认数值。

4.2.2 网络设置

详参第 3.2.2 节。

4.3 数据采集

在进行数采集之前,先进行参数设置,包括工程名称,构件名称,测试规程等等,在图 4.1 中点击【采样】,进入数据采集界面,如图 4.5 所示。

点击功能栏中的【搜索】,自动搜索 当前测点波形的首波,弹出首波自动 搜索提示框,首波找到后,提示框自 动隐藏。

图 4.5 数据采集界面

点击波形区的【···】,弹出调整菜单栏,如图 4.6 所示。在采样状态下,根据接收到的当前测点的动态波形,可以手动进行调整。

1. 调整延迟点数

如果首波没有出现在可视区内,可按 【左移波】【右移波】向左或向右移 动动态波形,使首波出现在可视区; 也可以通过在波形区左、右滑动波形 来实现波形左、右移动。

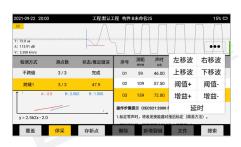


图 4.6 动态波形调整菜单

2. 调整基线位置

点击【上移波】【下移波】,可向上或向下调整基线位置。

3. 调整噪声区宽度

点击【阈值+】【阈值-】,可以增大或减小判定首波用的阈值。

4. 调整增益

当信号较弱时,首波幅度较小,可按【增益+】键以增加系统增益,从而使首波幅度增加;当信号较强时,首波幅度较大,可按【增益-】键以减小系统增益,从而使首波幅度降低。也可以通过在波形区上、下滑动来增加或减小增益。

5. 延时

从高压脉冲发射瞬间开始计时,延时设定时长后开始捕获接收换能器的波形,这个设定时长就是"采样延时"。

点击【延时】,弹出延时设置对话框,修改测点的采样延时。

6. 搜索

点击【搜索】,自动采样并搜索当前波形的首波。

7. 关闭调整菜单栏

点击波形区和菜单栏之外的任意区域,则调整菜单栏关闭。

当前测点波形显示比较理想,并且稳定时,点击【**存新点**】,则将当前测点数据保存,数据列表区会显示一行刚保存的数据。保存第一个测点后,将两只换能器同时下移一个测点,调整好波形后,点击【**存新点**】,如此反复,直到测试完。按【**停采**】停止采集。

新增裂缝:测试完一条缝后,如果测试下一条缝,则必须先新建缝。在主测量界面点击【新增裂缝】,缝数据列表增加一条数据项。

4.3.1 波形编辑

在停采状态下,点击【…】按钮,则在 弹出图 4.7 所示编辑菜单栏。

1. **左、右移动波形** 点击**【左移波】【右移波】**,将当前波 形左移、右移。

2. **左、右移动游标** 点击**【左移】【右移】**移动竖向(声时) 游标,并显示游标位置的声时值。

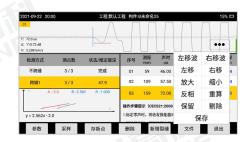


图 4.7 编辑菜单栏

3. 放大缩小波形

点击【放大】【缩小】,将当前波形放大缩小。

4. 设置反相点

点击【反相】将当前测点设置为反相点。

5. 清除状态

点击【重算】清除当前测点所有状态。

6. 剔除数据

点击【剔除】将当前测点数据手动剔除。

7. 保留数据

点击【保留】将当前测点数据手动保留。

8. 保存手动判读结果

点击【**保存**】,保存游标判定结果,即将当前测点的声时、波幅值用光标位置的声时及波幅值替代。

4.3.2 数据列表区

用于显示当前裂缝各测点的检测数据(测距、声时等)。在该区点击某数据行,则该数据行变为当前测点(黄色显示且数据行的高度变高),波形区显示该测点波形。

1. 设置 / 去掉反相点

选择某个测点的测距单元格,点击【···】按钮,弹出设置反相点对话框,提示"是否设置反相点?"。点击【是】即可完成。每条裂缝最多只有一个反相点,在将某个测点设为反相点后,以前设置的反相点标志自动去掉。在反相点的测点序号之前,会显示一个"★"号。

2. 手动保留 / 剔除

将当前测点的剔除标志设为手动保留或手动剔除,剔除后的测点将不参加平均计算,以保留测点的缝深值的平均值作为裂缝的计算深度。具体操作为.点击【···】按钮,弹出设置保留/剔除选项的对话框,直接选择即可完成设置。

4.4 数据删除

在图 4.1 中点击【删除】按钮,可以删除最后一条记录。若高亮选择的数据不是最后一条数据,则会弹出相应提示信息"请选择最后一条记录,再执行删除操作",点击数据区,选择最后一条记录,再点击【删除】按钮,删除选中数据。

4.5 数据覆盖

在图 4.1 中,选择需要被覆盖的数据记录,让它变成高亮显示,点击【采样】, 重新采集波形,等波形稳定后,可以点击【覆盖】按钮,将新采集波形数据覆 盖原来的波形数据。

4.6 数据分析

在停采状态下,根据存储测点的静态波形和数据,可以手动进行编辑分析。 点击波形区的【…】,弹出编辑菜单栏,详参 4.3.1 节。

4.7 文件管理

文件管理界面如图 4.8 所示。

查看已测的工程及数据文件,并可选择 工程或构件后复制到 U 盘、上传海创 服务器或进行删除。左边列表显示已存 工程,右侧列表显示当前高亮工程下面 的构件,同时也显示工程、构件的存储 数据条数等信息。

已选择的工程和构件为高亮显示。点击 【浏览】按钮,会浏览高亮的构件数据 以及波形信息等。

点击【操作】按钮,界面如图 4.9 所示,可选择工程和构件后复制到 U 盘、上传海创服务器或进行删除。

点击【全选】按钮,执行全部选中操作, 全选按钮变为反选按钮。若点击【反选】 按钮,则取消选中的构件和工程。

图 4.8 文件界面

图 4.9 文件操作界面

点击【转 U 盘】按钮,将选中的工程和构件复制到 U 盘(要求先插入 U 盘再执行此操作)。完成转存后会显示提示信息对话框,如图 4.10 所示。

图 4. 10 转 U 盘成功提示

点击【上传】按钮,将选中的工程和构件上传至服务器。完成上传后会显示提示信息对话框,如图 4.11 所示。

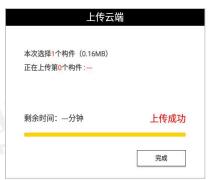


图 4.11 上传成功提示

点击【删除】按钮,显示提示信息对话框,如图 4.12 所示,点击【确定】 按钮后执行删除选中的工程和构件。

图 4.12 删除提示

4.8 退出

在主测量界面点击【退出】,则关闭混凝土裂缝深度检测软件,并返回至功能选项界面。

混凝土裂缝宽度检测

5.1 主测量界面

在功能选项界面,点击【**1**】后,进入 裂缝测宽主测量界面,如图 5.1 所示。

主测量界面包括四部分:

- 1.参数信息区:显示工程名称、构件名称、存储数量、当前裂缝宽度等信息。
- 2.图像采集区:显示当前采集的构件表面及裂缝宽度值。
- 3.刻度标识区:显示系统标准刻度尺。
- 4.功能按钮区:显示各个功能按钮。

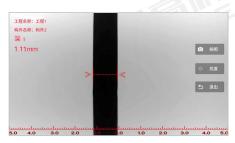


图 5.1 数据采集界面

5.2 数据采集

在图 5.1 中点击【拍照】,进入数据处理界面,如图 5.2 所示。

点击**【返回】**按钮,不保存当前构件并返回至功能选项界面。

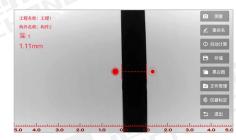


图 5.2 数据处理界面

5.3 数据处理

在图 5.2 界面中,可对当前拍摄的照片进行处理及管理。

宽度调整:

通过触摸屏点击裂缝两侧的光标点,可对光标线标识的裂缝宽度进行调整。

测量:点击【测量】按钮可重新拍照;

重命名:点击【重命名】可对工程、构件名称进行修改;

自动计算:点击【自动计算】将光标恢复到中间水平位置,且重新计算裂缝宽

度值;

存储:点击【存储】保存当前构件;

黑白图:点击【黑白图】切换原始图和黑白图。

5.4 文件管理

在图 5.2 界面中,点击【文件管理】进入文件管理的功能界面,如图 5.3 所示。

查看已测的工程及数据文件,并可选择 工程或构件/照片后复制到U盘和删除。 左边列表显示已存工程,右侧列表显示 当前高亮工程下面的构件,同时也显示 工程、构件/照片的存储数据信息。

已选择的工程和构件/照片为高亮显示, 点击【浏览】会浏览高亮的构件数据。

点击【操作】,界面如图 5.4 所示,可选择工程和构件/照片后复制到 U 盘或讲行删除。

点击【全选】,执行全部选中操作,全 选按钮变为反选按钮。若在此点击【反 选】则取消选中的构件/照片和工程。

图 5.3 文件管理

图 5.4 文件操作

点击【转 U 盘】,将选中的工程和构件/照片复制到 U 盘(要求先插入 U 盘再执行此操作)。完成转存后会显示提示信息对话框,如图 5.5 所示。

图 5.5 转存成功界面

点击【删除】,显示提示信息对话框,如图 5.6 所示,点击【确定】后执行删除选中的工程和构件/照片。

图 5.6 删除提示

点击【浏览】,进入数据浏览界面,如图 5.7 所示。

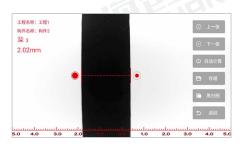


图 5.7 浏览界面

23

在此界面中左上方显示工程名称、构件名称、当前工程下已保存的构件/照片数量、裂缝宽度;屏幕下方显示刻度尺;右侧为按钮区域。

查看照片时可对裂缝宽度进行调整,通过触摸屏切换光标;长按或短按可调整光标位置;

点击【上一张】、【下一张】按钮可切换照片;

点击【自动计算】将光标恢复到中间水平位置,且重新计算裂缝宽度值;

点击【存储】保存当前构件;

点击【黑白图】切换原始图和黑白图;

点击【返回】按钮,不保存当前构件并返回数据管理界面。

5.5 仪器标定

点击数据处理界面中的"仪器标定"按钮,进入仪器标定的功能界面,如图 5.8 所示。

图 5.8 标定界面

屏幕上方为标题栏,显示功能名称和电量;屏幕中间显示标定的结果,可直接 在文本框中输入测量值。

点击【标定】按钮,可进入标定测量界面,进行标定,如图 5.9 所示。

点击【恢复默认】按钮,可将测量值恢 复为默认。

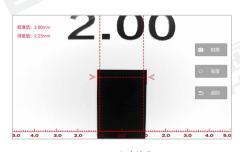


图 5.9a 标定拍照

在标定测量界面中,屏幕左上方显示标准值、测量值,右侧为按钮区域。

点击【拍照】按钮进行拍照,拍照后的界面如图 5.9 (a) 所示。

在图 5.9 (b) 界 面中,点击【标定】 按钮保存当前的测量值并返回到仪器标 定界面。

点击【返回】按钮,返回到仪器标定界面。

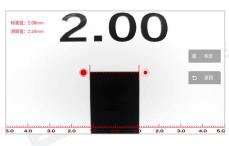


图 5.9b 标定确认

5.6 退出

在主测量界面、数据处理界面和仪器标定界面,点击【退出】,则关闭混凝土裂缝宽度检测软件,并返回至功能选项界面。

25

分析软件概述

6.1 简介

海创高科数据处理系统(以下简称系统)是由北京海创高科科技有限公司推出的用于处理超声检测数据的 windows 应用软件。本处理系统操作界面简单方便,能够读取裂缝综合测试仪所采集的数据,具有数据显示、分析计算、打印数据、报表导出等功能。

6.2 主要功能以及特点

海创高科数据处理系统包含如下软件:

1. 超声测缝(平测)分析软件:

对超声法测缝(平测)的数据可按照《CECS21:2000 超声法检测混凝土缺陷技术规程》或《BS 1881:Part203 Testing Concrete》等规程进行分析处理。

2. 裂缝测宽分析软件:

对裂缝宽度检测的数据,可按《JGJ125-2016 危险房屋鉴定标准》等规程进行分析处理。

6.3 文件类型

表 1.1 文件类型列表

类型	扩展名	说明
数据文件	.TTS	超声测缝数据文件
数据文件	.UD9	超声测缝数据文件
数据文件	.UD	超声测缝数据文件
数据文件	.CK	裂缝测宽数据文件

6.4 安装与卸载

6.4.1 软件安装

1.在 Windows 平台上, 找到海创高科数据处理系统 .exe 安装程序, 双击图标, 即可运行安装程序, 并弹出安装界面, 如图 6.1。然后按照提示, 点击"立即安装", 然后点击"下一步"执行安装, 直到安装完毕, 点击"完成"即可。

图 6.1 安装界面

2.安装完成后,打开主程序,如图 6.2 所示。

图 6.2 主程序界面

6.4.2 软件卸载

在"开始"菜单的"所有程序"中,双击"海创高科数据处理系统"即可进入软件卸载界面,如图 6.3 所示。点击"下一步",然后选择"删除",执行卸载操作,直到卸载完毕,点击"完成"即可。

图 6.3 主程序界面

超声测缝(平测)分析软件

7.1 超声测缝(平测)分析软件简介

超声测缝(平测)分析软件(以下简称测缝软件)是北京海创高科科技有限公 司推出的 Windows 应用软件, 主要用于分析处理 HC-F600 裂缝综合测试仪对 混凝土裂缝深度进行检测(平测法)所得的数据。

测缝软件主要有以下功能.

- 1)对工程中所有检测构件的工程信息、检测信息、超声数据等进行管理。
- 2)对检测数据按照《CECS 21:2000 超声法检测混凝土缺陷技术规程》、《BS 1881:Part203 Testing Concrete》等规程进行计算处理:对波形进行幅值谱分析。
- 3)可生成波列、波形及频谱图,并可将其保存为位图格式。
- 4)可以将多个测缝数据文件合并成一个文件:可以方便添加或移除缝数据。
- 5)打印预览、打印输出处理结果。

7.2 软件界面介绍

测缝软件界面主要由以下部分组成(如图 7.1 所示):标题栏、菜单栏、工具栏、 检测参数信息、波形图、幅值谱、波列图、回归曲线、数据列表、裂缝列表、 状态栏。

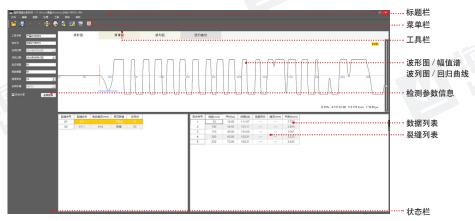
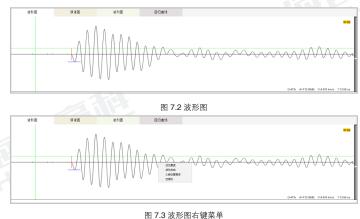



图 7.1 测缝软件主界面

- 1) 标题栏中从左到右显示软件图标、当前数据文件名、软件名称和三个标准 Windows 应用程序按钮。这三个标准 Windows 应用程序按钮的功能分别是最小化、 最大化、关闭程序。
- 2) 菜单条由7个下拉菜单项——文件、编辑、查看、处理、工具、语言及帮助组 成,如图 7.1 所示。单击每个菜单项都会出现一个下拉菜单,各对应一组功能。 这7个菜单项的子菜单项包含了本软件的所有功能。当某些菜单项呈置灰状态时 表示当前状态下该功能无效。
- 3) 工具栏由一系列按钮组成,如图 7.1 所示,每个按钮可以实现常用功能,虽然 菜单命令中已经包含了这些命令,通过工具栏按钮来实现较方便。将鼠标在某个 按钮上稍作停留, 屏幕上会自动显示该按钮的功能提示。当按钮颜色呈置灰状态 时表示当前状态下该功能无效。
- 4) 检测参数信息:显示当前所选择缝的测试信息,如图 7.1 所示,包括工程名称、 构件号、检测日期、浇筑日期、起点测距、测距增量、强度等级和检测规范等。 点击【全部应用】,则将当前文件中所有裂缝的信息修改成与当前裂缝相同。该 区中的自动计算复选框只有在当前数据为跨缝数据时才有效、当没有选中自动计 算后,数据列表的弹出式菜单中的手动剔除/保留菜单项才可能激活。
- 5) 波形图: 用于显示当前所选测点的波形,如图 7.2 所示。波形图的右上角显示 测点序号, 右下角显示首波的声参量值、增益。在波形区移动鼠标时, 会出现竖 向及横向两条光标线,同时在状态栏会显示光标位置的声时和波幅。

在波形区单击鼠标右键,弹出如图 7.3 所示右键菜单。

设为首波:在波形区移动鼠标,光标线跟随移动,将光标线移至首波起点位置,

点击鼠标右键选择【设为首波】,可将波形位置更新为选中的位置。

波形反向:选择【波形反向】,则可使当前测点波形反向显示。

左键设置首波: 在弹出菜单中选择【**左键设置首波**】项后,此菜单项前会出现"√"标识,此时设置首波,将竖向光标线移至首波起点位置,横向光标线移至首波波峰或波谷位置,单击鼠标左键即可更新首波位置。

6) 频谱图:对当前所选测点波形进行幅值谱分析并显示其频谱图,如图 7.4 所示。

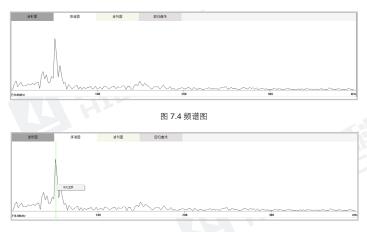


图 7.5 频谱图右键菜单

在频谱区单击鼠标右键,弹出如图 7.5 所示右键菜单。

设为主频:在频谱区移动鼠标,竖向光标线跟随移动,将光标线移至主频位置,频谱区主频数值跟随变化,点击鼠标右键选择【**设为主频**】,可将主频位置更新。

7) **波列图**:将当前裂缝所有测点的波形排列显示,如图 7.6 所示,每条波形上均显示该波形的测点序号,并以短竖线标出首波起点位置。

用鼠标左键单击任意测点波形,该波形高亮显示,波形区的波形变为此测点波形。

图 7.6 波列图

幅度调整:点击【幅度调整】按钮,可对当前构件或所有构件波形进行手动调整。

波形反向:点击【波形方向】按钮,将对波列区的波形反向显示,并且对应的波形区显示的波形反向显示。

道间距:点击【道间距】按钮,调整每道波形的纵向间距。 变面积:点击【变面积】按钮,对各波形的正半周填充显示。

8) **回归曲线**:显示不跨缝数据进行回归分析后的结果,系数 A 为回归方程的截距,系数 B 为回归方程的斜率,即所测混凝土构件的代表声速,系数 R 为回归方程的相关系数。

9) **数据列表**:用于显示当前裂缝各测点原始检测数据及计算结果。如图 7.7 所示。用鼠标左键单击数据行,也可用键盘上的"↑"、"↓"键选择需要查看的数据行,所选数据行以黄色显示,相应图形区联动显示测点波形和频谱图。

图 7.7 右键菜单

在数据列表区,点击鼠标右键,弹出如图 7.7 所示菜单,该菜单中的所有功能与 编辑菜单中完全相同。

- 10) **裂缝列表**: 用来展示构件中的裂缝信息,主要包括裂缝序号、裂缝名称、是否跨缝、推定缝深等信息。点击鼠标右键,弹出设为不跨缝、添加缝和移除缝菜单,菜单项功能与编辑菜单中完全相同。
- 11) 状态栏主要用来显示游标的状态信息。

7.3 菜单命令

7.3.1 文件菜单

1.**打开**: 打开超声检测时生成的数据文件(扩展名为 UD9、UD 和 TTS)。点击【打开】,弹出如图 7.8 所示对话框,从查找范围中选取要打开文件所在的文件夹,

或在文件名框中输入文件名或从文件列表框中选取要打开的文件,然后点击【打开】按钮,将文件打开。打开文件后,在图 7.1 所示的窗口中的各区域都会显示相应的数据或信息。

打开新的文件之前,如果之前打开的文件已被修改,则弹出是否保存对话框(如图 7.9 所示),选择【是】按钮,保存修改结果。选择【否】按钮,则不进行保存。选择【取消】按钮,则结束操作,关闭弹窗。

2.**保存**: 将分析处理结果保存当前数据 文件。

3.**另存为**:将当前打开文件另存为一个新的文件。点击【另存为】,弹出如图7.10所示的另存为对话框,在对话框中选取要保存文件所在的文件夹,或在文件名框中输入文件名后,点击【保存】按钮即可将文件保存。按【取消】按钮不另存并关闭弹窗。

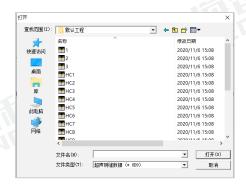


图 7.8 打开文件窗口

图 7.9 保存提示对话框

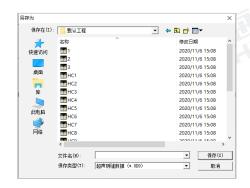


图 7.10 另存为窗口

保存文件之前,本地存在同名文件,则 弹出如图 7.11 所示的对话框,提示是 否覆盖该文件,若选择【是】按钮,覆 盖保存,被覆盖的文件将丢失并且不能 恢复。若选择【否】按钮,数据不做保 存并返回到另存为对话框,重新输入文 件名。

4.合并文件:将两个以上的测缝数据文件合并成一个文件。如图 7.12 所示,先【选择】一个不跨缝数据文件和多个跨缝数据文件,所选文件路径显示在弹窗界面中,【合并】所选数据并保存在目标文件夹中。

5.**导出文本文件**:将当前打开文件另存为文本格式的文件。

6.**生成位图**:设置生成位图缝列表范围和生成位图内容(波形、波列、频谱),保存位图在目标文件夹中,如图 7.13 所示。

7.**打印预览**:根据打印设置的内容,将打印的真实效果显示在屏幕中。点击【打印预览】,在弹出的打印设置对话框中选择打印内容,按【确定】按钮,则进入打印预览界面。图 7.14 为预览界面中的工具栏,工具栏各按钮的作用如下:

图 7.11 文件覆盖对话框

图 7.12 合并文件对话框

图 7.13 生成位图对话框

- 1)【打印】按钮用于打印输出。
- 2)【下一页】按钮用于向下翻页,该按钮置灰(无效)时,表示当前页是最后一页。

- 3)【**前一页**】按钮用于向上翻页,该按 钮置灰(无效)时,表示当前页是第一页。
- 4)【**两页** / **一页**】按钮用于同时并排显示两页或一页。
- 5)【**放大**/**缩小**】按钮用于放大或缩小显示,该按钮置灰(无效)时,表示已无法放大或缩小。
- 8. 打印:可对打印机等参数进行设置, 点击【打印】,弹出如图 7.15 所示的打 印设置对话框,按【确定】按钮,则设 置生效,进行打印。按【取消】按钮, 则设置无效,取消打印。



图 7.15 打印设置对话框

9. 最近打开文件:显示近4次打开的数据文件路径。【清除记录】将显示记录清除。10. 退出. 关闭当前数据文件并退出程序。

7.3.2 编辑菜单

- 1. 撤销:撤销上一步操作,在无操作时该按钮为置灰状态。
- 2. 恢复:将操作进行恢复。在无操作时该按钮为置灰状态。
- 3. 复制:将所选测点的数据复制一份。
- 4. 粘贴:选择粘贴方式后,添加所复制的测点数据。
- 5. 删除:将当前选择的测点波形进行删除。
- 6. 设置反相点:将当前测点设为反相点,序号前增加"★"标识。
- 7. **手动保留**. 将当前测点的剔除标志设为手动保留,并以保留测点的缝深值的平均值作为裂缝的计算深度。
- 8.设为不跨缝:可将当前选择的跨缝数据设置为不跨缝数据。

9. **添加缝**:将其他文件中的跨缝或不跨缝数据添加至当前文件中,以进行统一管理,如图 7.16 所示。

先选择添加跨缝或不跨缝数据,对于 BS1881 规范不跨缝选择项将为置灰状态,不可操作。在缝列表中显示所选数 据文件中的所有裂缝,可在此列表中选 择待添加的裂缝,点击添加按钮,将所 选裂缝数据添加至当前文件中。

图 7.16 添加缝对话框

- 10. 移除缝: 删除裂缝列表中所选的裂缝信息。
- 11. **声时修正**: 输入声时修正值(即零声时),对构件进行声时修正。

7.3.3 查看菜单

1. 采样参数:显示读入文件现场采集时所设置的高级参数,包括采样间隔、发射电压等信息,如图 7.17 所示,这些参数只用于查看,均不可修改。点击弹框的【关闭】按钮则关闭对话框。

图 7.17 采样参数

- 2. **工程信息**:可设置工程信息、仪器信息和测试人员信息,包括工程名称、工程地址、设计单位、施工单位等,如图7.18 所示。也可以导入其他数据文件中的工程信息。
- 3. **波形图**:显示当前所选择的测点的波形。点击鼠标右键,弹出设为首波、波形反向、左键设置首波菜单项。

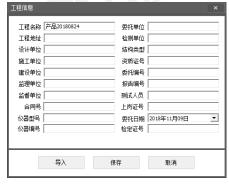


图 7.18 工程信息

- 4. **幅值谱**:对当前所选波形进行幅值谱分析并显示频谱图。点击鼠标右键,弹出设为主频菜单项,可将光标位置的频率设置为主频。
- 5. **波列图**: 将当前构件测点波形排列显示。点击鼠标右键,弹出幅度调整和波形反向菜单项。

幅度调整:通过滑动滑块来调整波列中波形的幅度。

6.回归曲线: 选择回归曲线,将当前缝不跨缝数据和跨缝数据的回归曲线进行显示。

注:对于《BS 1881: Part203 Testing Concrete》规范,不涉及回归曲线。

7.3.4 处理菜单

- 1.波形反向:将波形图和波列图中展示的波形反向显示。
- 2. 计算缝深: 计算所有缝的所有测点的缝深, 推定每条缝的深度值, 并将结果更新。
- 3. 变面积:对各波形的正半周填充显示。
- 4. 道间距: 调整每道波形的纵向间距。

7.3.5 工具菜单

1.**生成报告**:将所选数据文件按照所选报告模板生成检测报告。该功能必须预先安装 **Office** 办公软件。

提示: 检测报告模板可定制, 如需定制请联系本公司。

2.本地云数据:对存储在本计算机中的数据(仅包括下载自云端服务器)进行管理,包括筛选、分析、删除、另存为、导出数据库和导入数据库六个功能,如图 7.19 所示。

图 7.19 已下载云数据对话框

1) 筛选云数据

点击【**筛选按钮**】,将弹出筛选的对话框(如图 7.20 所示对话框),可按照时间、 月份、仪器编号等查询条件进行查询。

2) 分析云数据

勾选或双击数据列表中的某数据行,将 选中的数据在系统中打开并进行分析处 理。

3) 删除云数据

可对数据进行删除或批量删除。勾选【全选】,数据列表中数据行全被选中,点击【删除】按钮,选中的数据被删除。

图 7.20 筛选对话框

4) 另存数据

点击【另存为】, 可将选中云数据另存为一个新文件。

5) 导出数据库

点击【导出数据库】,弹出另存为对话框,选择需要保存的路径后,点击【保存】按钮可将本地云数据数据库另存为一个文件,扩展名为.db。

6) 导入数据库

点击【导入数据库】,弹出打开对话框,选择需要导入的文件后,点击【打开】按钮,将本地云数据数据库,扩展名为.db的文件导入软件。

- 3.**云操作选项**:对云服务器中的数据进行操作。包括仪器管理、查询、下载、删除四个功能,如图 7.21 所示。
- 1) 查询:点击【查询】按钮可按照设置的查询条件对数据进行查询。

图 7.21 云操作选项对话框

2) 仪器管理:点击【仪器管理】按钮将弹出如图 7.22 所示对话框,可进行仪器注册和删除已注册仪器操作。

图 7.22 仪器管理对话框

点击仪器管理对话框的【注册】按钮, 将弹出如图 7.23 所示对话框,可对仪 器进行注册。

在仪器编号列表对仪器编号进行选择, 选中后高亮显示,点击【删除】按钮, 可将注册的仪器删除。

图 7.23 仪器注册对话框

- 3) 仪器管理:点击【全选】按钮是将查询的数据进行全选操作。
- 4) 仪器管理:点击【下载】按钮可下载选中的云端数据到本地。
- 5) 仪器管理:点击【删除】按钮可删除选中的云端数据。
- 4.系统设置:对颜色、操作口令进行设置。
- 1) 颜色: 点击声参量前的颜色弹出颜色对话框,可对声参量显示颜色进行设置。
- 2) 操作口令: 输入口令后将获取管理员的权限。可修改管理员操作口令。

7.3.6 帮助菜单

关于: 查看公司名称、软件名称及版本号等信息。

8

裂缝宽度分析软件

8.1 裂缝宽度分析软件简介

裂缝测宽处理软件是由北京海创高科科技有限公司推出的 Windows 应用软件,主要用于对桥梁、隧道、墙体、混凝土路面、金属表面等裂缝宽度进行检测的数据处理。

测宽分析软件主要有以下功能:

- 1)对工程中所有检测构件的信息、检测数据进行管理。
- 2)对检测数据可按照全国及地方规程进行计算处理。
- 3)可以进行打印预览、打印输出处理结果,生成报表等。

8.2 软件界面介绍

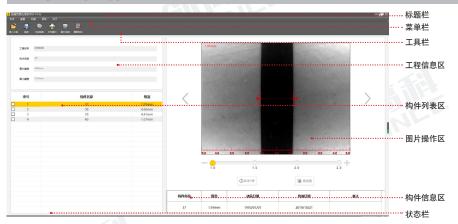


图 8.1

- 1) 标题栏中从左到右显示软件图标、软件名称、以及三个标准 Windows 应用程序按钮。这三个标准 Windows 应用程序按钮的功能分别是最小化、最大化、关闭程序。
- 2) 菜单栏由 5 个下拉菜单项: 文件、查看、判读、语言、关于组成,如图 8.1 所示。单击每个菜单项都会出现一个下拉菜单,各对应一组功能。这 5 个菜单项的子菜单项包含了本软件的所有功能。
- 3) 工具栏由一系列按钮组成,如图 8.1 所示,每个按钮可以实现常用功能,菜单栏中已经包含了这些功能,通过工具栏按钮来实现较方便。

- **4)** 工程信息区用于显示当前打开的工程中的工程名称、构件总数、最大缝宽和最小缝宽,如图 **8.1** 所示,工程信息区为不可编辑状态。
- 5) **构件列表区**:用于展示工程的所有构件名称及裂缝宽度,可对构件进行右键操作,包括全选或删除动作;用鼠标左键单击裂缝图片文件,将打开该文件并在图片显示区显示。
- 6) **图片操作区**:用于显示当前打开的图片并对裂缝宽度进行手动或自动判读,可对图片进行放大或者缩小,一键黑白图,切换构件图片等操作。
- 7) **构件信息区**:用于展示构件信息的详情数据,可查看构件名称,裂缝宽度;可对浇筑日期,检测日期进行修改;可在备注栏添加对构件的相应备注。

8.3 菜单命令

8.3.1 文件菜单

1. 导入工程

打开仪器生成的工程文件。打开工程后,在图 8.1 中所示的窗口中的各区域都会显示相应的数据或信息。

2. 导入文件

打开仪器生成的数据文件(扩展名为.CK)。打开文件后,在图 8.1 中所示窗口中,各区域都会显示相应的数据或信息。

3. 保存文件

将分析处理结果保存到当前数据文件。

4. 打印图片

设置需要打印图片的内容,如图 8.2 所示,设置包括常规内容、打印内容、页眉页脚。

恢复默认:恢复系统默认的初始值。 **打印预览**:根据打印设置的内容,将打印 的真实效果显示在屏幕中。

直接打印:可以将图片直接保存在本地。

图 8.2

5. 生成报表

选择报表模板,将当前数据或所选数据生成 Word 或 Excel 文件保存到本地。

6. 退出

关闭当前数据文件并退出程序

8.3.2 查看菜单

- 1. 缩小: 图片操作区的图片进行缩小。
- 2. 放大: 图片操作区的图片进行放大。
- 3. 黑白 / 原始图:图片操作区的图片进行黑白图和原始图片的切换。

8.3.3 判读菜单

自动计算:点击自动计算之后,将光标恢复到中间水平位置,且重新计算裂缝宽度值。

8.3.4 关于菜单

关于: 查看软件名称及版本号等信息。

8.3.5 工具栏

1. **图片另存**:设置需要图片另存的内容,如图 8.3 所示,设置包括图片类型、图片格式。

点击**【确定】**,设置保存本地的路径, 将图片保存到本地。

2. 删除构件

删除构件列表中选中的构件,点击按钮 弹出对话框,提示用户,确定删除当前 选中的构件,如图 8.4 所示。此功能也 可在构件信息列表中,选中构件后,点 击鼠标右键,进行全选和删除构件操作。

图 8.3



图 8.4

常用快捷键说明

本软件中一些常用功能均可采用快捷键(菜单项后面列出的键)进行操作,这 样可以提高效率。详细说明如下:

9.1 文件菜单中的快捷键列表

功能	快捷键	功能	快捷键
打开文件	Ctrl+O	保存文件	Ctrl+S

9.2 编辑菜单中的快捷键列表

功能	快捷键	功能	快捷键
复制	Ctrl+C	撤销	Ctrl+Z
粘贴	Ctrl+V	恢复	Ctrl+Y

